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TECHNICAL PUBLICATION

A RECOMMENDED PROCEDURE FOR ESTIMATING THE COSMIC-RAY SPECTRAL
PARAMETER OF A SIMPLE POWER LAW WITH APPLICATIONS

TO DETECTOR DESIGN

1.  INTRODUCTION

This Technical Publication (TP) develops and compares two statistical methods for estimating
the spectral parameter of the simple power law energy spectrum from simulated detector responses
(energy deposits). The maximum likelihood (ML) procedure, which is shown to be the superior
approach, is then generalized for application to a set of real cosmic-ray data that make the methodol-
ogy applicable to existing cosmic-ray data sets.

As part of this research, analytical methods were developed in conjunction with a Monte Carlo
simulation to explore the combination of the expected cosmic-ray environment with a generic
space-based detector and its planned life cycle. This allows exploration of various detector features
and their subsequent impact on estimating this spectral parameter. This study thereby permits instru-
ment developers to make important trade studies in design parameters as a function of the science
objectives, which is particularly important for space-based detectors where physical parameters, such
as dimension and weight, impose rigorous practical limits to the design envelope.
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2.  SIMPLE POWER LAW

The simple power law suggests that the number of protons detected above an energy E for an
assumed collecting power (combination of size and observing time) is given by1

N E N
E
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where E is in units TeV, α1 is believed to be ≈ 2.8, and NΑ and EΑ are numbers determined from the
detector size and exposure time in the environment. For a typical space-based detector of 1 m2 with a
3-yr program life, NΑ and EΑ are 160 and 500 TeV, respectively, implying that this detector is
expected to observe 160 proton events above 500 TeV over its expected life cycle. In statistical terms,
N0 is assumed to represent an average number of events while the actual number to be observed on
any given mission would follow the Poisson probability distribution with mean number N0. The num-
ber of particles detected depends only on the geometrical factor of the assumed detector and its mate-
rial composition. The detection efficiency is a convolution of the geometry and material composition
and is taken to be independent of energy.

The associated cumulative probability distribution function for E over an energy range [E1,E2]
is then given by
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Thus, the corresponding probability density function (pdf) for E is obtained by differentiating
equation (2) to give
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To randomly sample GCR proton event energies from the simple power spectrum over the
interval [E1,E2], ui=Φ0(Ei) is solved in terms of Ei to obtain

E u E u E Ei i i= = + −( )
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where ui is a simulated random number from a standard uniform distribution and Φ0
–1 represents the

inverse function of Φ0, which is a conventional notation that will be used in subsequent sections. The
mean, variance, and other moments of the simple power law distribution are determined by the expected
value operator, where the general form of Em  is
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Note a crucial point at this time, and that is <E2> becomes infinite (as do all other higher
moments) as E2 goes to infinity, which is easily seen in equation (6):

b a

b
x x dx a

→∞
−∫ = ∞ ≤ >lim .2 3 0λ λfor all and (6)

This observation suggests the need for a careful look at the effects of the large variance and
other higher moments associated with all power law distributions, even when E2 is kept finite. A
measure of the relative dispersion of the energies of the incident protons, which is independent of
units, is defined by V=σΕ /µΕ  for the simple power law and is called the coefficient of variation in the
statistical literature. An important concept in detector design is the energy resolution ρ of the detector
that provides a measure of the relative accuracy of a cosmic-ray detector, which is the fractional error
in measurements of a monoenergetic beam. The resolution ρ is defined as the standard deviation
divided by the mean response with typical values of 30 to 40 percent.

As will be shown in this TP, the precision with which the spectral parameter α1 can be esti-
mated from a set of detector responses (energy deposits), measured in terms of its standard deviation,
is a function of both the variance of the incident energies and the uncertainty induced by the detector.
The dominating component of this measurement precision will be shown to be attributable to the
standard deviation of the incident energies σE, which in turn can only be controlled through collecting
power. Since V and ρ are dimensionless and provide a measure of relative dispersion for the power
law distribution and detector, respectively, an instructive comparison will show that V >> ρ. To illus-
trate these points, a detector life cycle having parameters NΑ  = 160 and EΑ  = 500 TeV will observe
52,200 events on average in the energy range E1 = 20 TeV to E2 = 5,500 TeV from a simple power law
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Figure 1. Standard deviation of simulated incident energies from power
law (ragged curve) for 100 missions compared with that from
normal distribution having same mean and variance.

spectrum when α1 is 2.8. This gives a mean galactic cosmic-ray (GCR) event energy µE  = 44.5 TeV,
a standard deviation σE  = 74.10 TeV, and a coefficient of variation V = 166.5 percent. In comparison,
the resolution ρ of most detectors is between 30 and 40 percent. E2 is chosen for this detector life
cycle combination as 5,500 TeV, since the expected number of events above this energy are negli-
gible, while E1 is taken to be 20 TeV for purposes of this discussion.

Since the number of events and their incident energies will vary because of the finite detector
size and exposure time, the statistical behavior of the GCR event energies in combination with a
detector having energy resolution ρ and the subsequent spectral parameter estimate over multiple
missions shall be studied. Thus, for each mission, a random number N of GCR events from a Poisson
distribution with mean 52,200 representing the number of simulated events that the detector will
observe in the energy range 20 to 5,500 TeV on any given mission is first generated.

Next, the incident energy of each of these N events using equation (4) is simulated. For
example, for one such simulated mission, N = 51,883 and the mean and standard deviation of the
simulated GCR incident energies are calculated to be 43.85 and 66.39 TeV, respectively. To illustrate
the large fluctuations associated with power law distributions, the same number of events (51,883)
from a normal distribution having a mean of 44.5 and standard deviation 74.1 so as to match the
power law’s mean and standard deviation for this energy range when α1 = 2.8 was also simulated. The
sample mean and standard deviation, 44.51 and 74.17, respectively, for a single sample mission, which
are much closer to the population mean and variance than those from the power law random samples,
were also observed. The process is repeated for 100 missions and the standard deviation for each
mission is plotted in figure 1.
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Note the large fluctuations of the standard deviations for the power law samples from mission
to mission; while in contrast, the standard deviations of missions generated from a normal distribu-
tion are very stable. As will be seen in subsequent sections, this is why the variation in detector
responses is dominated by the variation of the GCR event energies, relative to the uncertainty induced
by detector resolution. This in turn contributes the dominant component of the standard deviation of
the spectral parameter estimator.

The variation of the sample standard deviation s used as an estimator of σ and measured by its
standard deviation is given by

σ
µ µ

µs N
=

−4 2
2

24
, (7)

where µr is the rth central moment about the mean,2 defined for the simple power law as

µ φr
rE u E dEE= −∫ ( ) ( ) .0

(8)

Thus, the large variation in mission standard deviations is due to the term µ4, which again is
only finite by setting E2 to a finite value, but nevertheless is responsible for the erratic behavior of the
mission-to-mission sample standard deviations depicted in figure 1. This erratic behavior of the
observed mission standard deviations will be true for any power law having spectral index α1 in the
range 3 < α1 ≤ 5. Note that for the normal distribution,

σ
σ

s N
=

2
, (9)

and evaluation of these two formulae yield σs = 5 TeV for the simple power law and 0.229 TeV for the
normal distribution, which is roughly a factor of 22.
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3.  ESTIMATION OF THE SPECTRAL PARAMETER ααααα1

Of particular interest in the study of cosmic rays is the estimation of the spectral parameter α1
from a set of data. In this section, two statistical procedures for estimating α1 are developed and
compared. Even though in practice the actual incident particle energies are never observed (but only
a measure of their energy deposition from their passage through the detector), it is important to con-
sider the concept of an ideal detector having zero resolution. Thus, such a detector would measure the
GCR event energies exactly.

3.1  Method of Moments

The method of moments consists of equating the sample moments with the population
moments, which in general leads to k simultaneous nonlinear algebraic equations in the k unknown
population parameters. For the simple power law, there is only one parameter to be estimated, so the
sample mean E  is set to the population mean µE obtained by setting m = 1 in equation (5) to obtain
equation (10) to be solved in terms of α̂1:
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Thus, for a given sample of size N, this equation is solved in terms of α̂1by numerical methods
to provide an estimate of α1. This estimator, which is a function of the random variable E , has its own
associated pdf. Since the GCR incident energy E has mean µE and finite variance σ E

2  (only because
the upper energy E2 is finite), it is known by the central limit theorem that the distribution of the
sample average E  follows a normal distribution with mean µE and variance σ E

2 /N.

For example, when α1 = 2.8, E1 = 20 TeV, and E2 = 5,500 TeV, E  is normally distributed with
mean 44.5 TeV and standard deviation (74.1 TeV)/N1/2. These results can be used to obtain the
probability distribution of the estimator by solving the probability equation,
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in terms of α̂1 for various values of Z. Letting Z vary from –4.7 to 4.7 and setting N = 52,000 events
gives the probability distribution of α̂1 shown in figure 2. Also depicted in figure 2 is the relative
frequency histogram of the estimates α̂1, based on 5,000 simulated missions. For each mission, 52,000
events on average are simulated and the estimate of α1 obtained by solving equation (11). Further-
more, even though there is no explicit mathematical form for the pdf, its mean and standard deviation
can be calculated by numerical methods. For the distribution shown here, its mean is numerically
evaluated to be 2.800 and standard deviation as 0.0115 when N = 52,000, which compares to the mean
and standard deviation of the 5,000 simulated estimates with 2.800 and 0.0114, respectively. With the
ability to numerically construct this estimator’s pdf and moments, the important result found was that
its variance is inversely proportional to the sample size N, which happens to be true for many common
estimators (e.g., the sample mean, standard deviation, and median). For example, if the number of
events is doubled, then the variance is halved; and if the number of events is halved, then the variance
doubles. Note that this relationship between sample size and the standard deviation of the estimator
α̂1is based on keeping E1 and E2 fixed, so that in practice, increasing the collecting power can reduce
the variance.

Theoretical Distribution of     Versus
Histogram of Estimates Based on 5,000 Missions
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Figure 2. Probability distribution of method of moments estimate
of α1 with relative frequency histogram of spectral parameter
estimates obtained from simulation.



8

3.2  Method of Maximum Likelihood

The likelihood function of a random sample from the simple power law, regarded as a function
of the single unknown parameter α1, is

L
E E
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The method of ML seeks as the estimate of α1 that value (say, αML) which maximizes the
likelihood function so that L(αML ) ≥ L(α1) for all α1. Statistically, this means that the ML estimator
leads us to a choice of α1 that maximizes the probability of obtaining the observed data. In practice, it
is often simpler to work with the logarithm of the likelihood function and seek solutions of (log L)′
= 0 for which (log L)″ < 0 (indicating a maximum), where the prime and double prime indicate the
first and second derivative, respectively. Thus, equation (13) is numerically solved in terms of α1 to
obtain the ML estimate αML:
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The second derivative of the log-likelihood function is next obtained. Note that (log L) ″ < 0 for
all α1, indicating that log L is concave; hence, there is a unique maximum, which was graphically
observed by plotting log L as a function of α1:
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By the Cramer-Rao inequality, the lower bound of the variance of any estimator   
)α  of α1 is

given by

  

Var( )
log

,
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≥
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∂
∂

1
2

1
2

L
(15)

which is asymptotically attained by the ML estimator. Also note that it is inversely proportional to the
number of events N as was the variance of the estimator obtained using the method of moments. Other
important properties of ML estimators are that they are (1) asymptotically normally distributed and
(2) consistency or asymptotically unbiased. Thus, a key question is, “For what values of N are these
asymptotic properties achieved by the ML procedure?”
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Based on the same 5,000 mission set discussed in section 3, the mean and standard deviation
of the 5,000 ML estimates are 2.800 and 0.00782, respectively. Using equations (15) and (16), the
Cramer-Rao bound is computed to be 0.00786 when N = 52,000 and αML = 2.800, which compares
very well with the simulation results. Furthermore, the frequency histogram of these 5,000 ML esti-
mates resembled the normal distribution as stated in (1) of the above paragraph. A separate simulation
study was conducted in which the sample size N was gradually reduced from 52,000 to 200 and the
two asymptotic properties—attaining the Cramer-Rao bound and consistency—were achieved by the
ML estimates until N equals ≈ 2,000. A bias on the high side of αML and failure to attain the Cramer-
Rao bound became more and more evident as the number of events N diminished from 2,000 to 200.

Another very important comparison is the ratio of the standard deviation of αML to that of the
estimator, obtained using the method of moments. Direct calculation shows this ratio is roughly 1.45,
implying that the ML procedure is significantly better than the method of moments when dealing with
the simple power law. This result is not too surprising, however, because ML estimators in general
have better statistical properties than the estimators obtained by the method of moments.3
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4.  DETECTOR RESPONSE FUNCTION

Based on GEANT simulations of energy deposition for monoenergetic protons at specified
energies of 0.1, 1, 10, 100, 1,000, and 5,000 TeV, the Gaussian distribution provided a reasonable
description of the distribution of energy depositions at each of these incident energies.4 Furthermore,
the mean detector response was well approximated by a linear function of incident energy in the range
of interest for this study, typically between 10 and 5,500 TeV. Other detector response functions, such
as a gamma distribution and another response function constructed from a combination of normal
distributions having different parameters, will also be presented.

The random variable Y is introduced to represent the detector’s response in terms of energy
deposition of a GCR proton of incident energy E. The conditional mean response and standard devia-
tion of Y for a particular incident energy E are modeled as µY E a bE| = +( )  and σY E (c dE| )= + ,
respectively, where the four coefficients a, b, c, and d are estimated using linear regression in the
GEANT simulation results. Thus, for each simulated incident GCR proton energy Ei, the detector
response is simulated as

Y Zi Y E Y E ii i
= +µ σ| |

(16)

or

Y a bE c dE Zi i i i= + + +( ) ( ) , (17)

with the nonnegativity constraint Yi > 0 and where Zi is a standard normal random number having zero
mean and unit standard deviation. Thus, the detector response function is defined as

g y E e yy E

y E

y y E

y E( | ) , ,|

|

( )|

|= >
−

−
η

πσ

µ
σ

2
0

2

2

2

2 (18)

where ηy |E is a normalizing coefficient related to the truncation of the normal distribution resulting
from the constraint y > 0. It is worth noting for constant resolution studies in which a Gaussian
response function is assumed and ρ = σ/µ is set to values 0.4 and 0.6, the corresponding detector
energy resolution is 39 and 51 percent, respectively, and is rounded to 40 and 50 percent in the figures
and tables in this TP.
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Thus, ηy |E is determined from

1 1
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2

1

2
η π

ρ
y E
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e dz

y E
|
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,=
−∞

−
∫ (19)

where the lower limit of integration is –1 divided by the resolution function, given as

ρ σ µy E Y E Y E c dE a bE| | | =   /  =  ( + ) / ( + )  . (20)

First, it is worthwhile to consider a detector having energy resolution ρy |E  = σY |E /µY |E
a constant ρ and independent of the cosmic-ray’s energy E so that σY|E = ρ µY |E, where typical values
of interest for ρ are 0, 0.2, 0.3, 0.4, and 0.6. It should also be noted that the normalizing coefficient η
in equation (19) is constant whenever the detector resolution ρ is energy independent.

Second, a case where µY|E and σY|E are linear but their ratio is not a constant, so that the
detector’s resolution is a nonlinear function of incident energy E, was investigated. For this second
scenario, two studies were conducted in which the resolution is getting better, from 40-percent
resolution at 20 TeV to 30-percent resolution at 5,500 TeV, and then getting worse, from 30-percent
resolution at 20 TeV to 40-percent resolution at 5,500 TeV. These two energy-dependent cases are
presented in section 8.
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5.  PROBABILITY DISTRIBUTION OF THE DETECTOR RESPONSE

The probability distribution for the detector response in the presence of the simple power law
energy spectrum over the energy range [E1,E2] is

g y g y E E dE y
E

E

0 1 0 1

1

2

0( ; ) ( | ; ) ( ; ) , .α ρ φ α= >∫ (21)

The spectral parameter α1 has been explicitly included in the argument list of both the simple
power law pdf as φ0(Ε;α1) and the detector response distribution g0(y;α1) in equation (21) to indicate
that this spectral index is inherited through the integral.
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6.  IDEAL DETECTOR

The concept of a zero-resolution or ideal detector is very useful because it sets an upper bound
on the expected performance of any real detector. Furthermore, it allows quantifing the magnitude of
the uncertainty in the estimate of the spectral parameter. This uncertainty is measured in terms of the
standard deviation of the estimator and attributable to event statistics (statistical fluctuation of inci-
dent GCR proton energies) relative to the uncertainty in measuring the spectral parameter estimate
induced by the detector’s nonzero energy resolution.

Thus, for an ideal detector, ρ = 0 so that the standard deviation σY |E = 0 for all GCR event
energies E. Hence, the detector response to a GCR of energy E is given by Y = a + bE so that the
incident energies may be directly obtained as E = (Y – a)/b so that the estimation procedures devel-
oped in sections 4 and 5 apply.

6.1  Method of Moments for a “Real” Detector

The conditional expected value theorem is utilized that says the expected value of the condi-
tional expected value is the unconditional expected value,5 or in the notation of mathematical expec-
tation applied to the detector response Y,

µY Y Y E= < > = << >>| . (22)

Thus, for a detector with constant resolution ρ, the following is obtained:

µ µ ρη ρ
π

ρ

Y E

x

a b
x

e dx= + +
















−

−

∞

∫( ) ( ) ,1
2

2

2

1

(23)

where µY is the mean of the detector response distribution and µE is the mean of the simple power law
distribution. The term involving the integral can be thought of as a correction term to the mean for the
truncation and can be ignored whenever ρ < 0.30; i.e., 30-percent resolution or better. Using the
method of moments, µY is estimated with the sample average Y . When combined with equation (5)
with m = 1 for µE yields equation (24) that can then be solved in terms of α̂1by numerical methods:
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For example, when the resolution is a constant 40 percent (ρ = 0.40), the point estimate of the
spectral parameter α1, based on the 5,000 missions, is 2.801 using equation (24) and 2.79 using the
same equation but with the correction term set to zero in the denominator. This results in a bias of
≈ 0.01 that can be removed by including this correction term. This effect is much more pronounced
when ρ = 0.6 and results in a bias of 0.1 in the point estimate of α1, so the correction term is critical.

When the detector response distribution is symmetric and truncation is negligible so that µY
= (a + bµE), then α1 can always be estimated using the mean of the detector responses Y  to estimate
µY in equation (5) with m = 1. This implies that knowledge of the variance of the detector distribution,
and hence the resolution, is not required in order to estimate α1, provided it is known the resolution is
<30 percent so the effect of truncation can be ignored.

This is a useful result because if the uncertainty regarding the true resolution is non negligible,
then the method of moments might be a good way to proceed with the estimation of α1; e.g., it is
known the detector’s energy resolution is <30 percent but nothing more. However, as already noted,
the method of moments does not provide the minimum variance estimator that the ML method does,
which requires a complete specification of the detector parameters a, b, c, and d of this assumed
Gaussian response function. Furthermore, the energy resolution of most real detectors is worse than
30 percent.

This estimator, based on the method of moments, is a function of the random variable Y and
has its own associated pdf. Since Y has mean µY and variance σY

2 , it is known by the central limit
theorem the distribution of Y  follows a normal distribution with mean µY and variance σY

2 /N. Thus,
the variance of the detector response Y is σ µY YY2 2 2= −  where

Y a ab b b
x

e dxE E E

x
2 2 2 2 2 2

2
2

1
2

1

2

2

= + + +( ) +
















−

−

∞

∫µ σ µ η ρ
ρ
π

ρ

( )
( )

. (25)

For example, when α1 = 2.8, E1 = 20 TeV, E2 = 5,500 TeV, and ρ  = 0.40, Y is normally distributed
with mean 131.58 GeV and standard deviation (213.69 GeV)/N1/2. The probability distribution of α̂1
can be constructed and its mean and standard deviation obtained by solving the probability equation
in equation (26) using the methods discussed with equation (11):
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If the truncation effect is negligible in equation (25), then the following succinct formula for
the variance of the detector response as a function of detector parameters a, b, and ρ and the mean µE
and variance σ E

2  of the power law distribution is obtained:

σ σ ρ µ σy E E Eb a b b2 2 2 2 2 2 2= + +( ) +





. (27)

In terms of the standard deviation of the detector response σy, the approximation in equation
(27) is seen to be quite good. When ρ = 0.4, this formula yields σy = 213.37 GeV as compared to the
exact value of 213.69 GeV obtained from equation (26) using the integral correction terms. When
ρ  = 0.6, this approximation yields σy = 237.31 GeV as compared to the actual value of 239.78 GeV.
Thus, ignoring the truncation is not too serious when estimating the standard deviation but can be
devastating for ρ  > 0.4 when estimating the mean µY and hence α1 when using the method of
moments. Much insight into the estimation of the spectral parameter α1 can be gleaned from equation
(27) as it shows the relationship between the variance σY

2  of the detector response distribution, the
variance σ E

2  of the GCR proton energy spectrum, and the detector response function parameters a, b,
and ρ.

The influence of the variance and other higher moments of the simple power law energy spec-
trum is visualized in figure 3, which shows the mean detector response (mean energy deposit) per
mission for 30 simulated missions in comparison with the mean incident proton energy for 30 mis-
sions. Corresponding standard deviations per mission are plotted in figure 4. Note that the detector
response mean and standard deviation per mission tends to track the mean and standard deviation of
the incident energies for the 30 missions, illustrating the strong influence of the GCR energy mission-
to-mission fluctuations on the detector response variation, even in the presence of the “smearing”
induced by this detector having 40-percent energy resolution. In section 6.2, the component of varia-
tion due to the GCR event statistics will be the dominating the component of the total variation in the
standard deviation of the estimator of the spectral index α1.
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Figure 4. Comparing the standard deviation of the GCR incident
energies with the standard deviation of the detector responses
for each of 30 missions.
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6.2  Maximum Likelihood for a “Real” Detector

As in section 6.1, the method of ML seeks αML which maximizes the log-L function so that log
L(αML ) ≥ log L(α1) for all α1, where the likelihood function for the detector response in the presence
of the simple power law energy spectrum of N incident GCR protons over the energy range [E1,E2] is

log ( ) log ( ; ) log ( | ) ( ; ) .L g y g y E E dEj
j

N

E

E

j
j

N
α α φ α1 0 1

1
0 1

1
1

2

= ( )[ ] =














= =

∑ ∫∑ (28)

Because of the complexity of the integral and the desired capability to easily change the func-
tional form of the detector response function g in equation (28), a numerical minimization algorithm
called the Nelder-Mead downhill simplex method that does not require gradient information (deriva-
tives) for obtaining αML was chosen.6 Since this is a minimization algorithm, the objective function is
defined as

O L g y E E dE
E

E

j
j

N
( ) log ( ) log ( | ) ( ; ) ,α α φ α1 1 0 1

1
1

2

= − = −
















∫∑
=

(29)

so that minimizing O(α1) maximizes log L(α1) as desired, where the integral is numerically evalu-
ated. The following two termination criteria are used to halt the search procedure for the ML estimate
at the (m + 1)th iteration:

(i)  |α1,m+1 – α1,m |<ε1

(ii)  |O(α1,m+1) – O(α1,m)|<ε2   .       (30)

The search procedure continues until the termination criteria are met, which in words is as
follows: (i) The movement in successive step sizes of α1 is <ε1 and (ii) the objective function is
changing by an amount <ε2. Typical values used for these two stopping tolerances are on the order of
10–5 and seem reasonable in light of the magnitude of the parameter being estimated (≈2.8) and the
value of the objective function in the vicinity of the found ML solution O(αML), of the order of
magnitude 105 when E1 is taken to be anywhere between 10 and 30 TeV, so the number of terms in the
sum is between 182,000 to 26,000, respectively. Furthermore, changing ε1  and/or ε2 in either direc-
tion by an order of magnitude provided no noticeable change in results.
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Figure 5 shows the ML estimates of α1 for a zero-percent resolution detector obtained from
equation (14) in comparison with the ML estimates obtained from a 40-percent resolution detector
and applying the downhill simplex algorithm to equation (29) for 30 missions. This very close com-
parison suggests that the GCR event statistics are the dominating component of uncertainty in the
estimation of the spectral parameter α1.
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Figure 5. Maximum likelihood estimates for zero- and 40-percent
resolution detector for 30 missions.
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7.  NON-GAUSSIAN DETECTOR RESPONSE FUNCTION

The results so far have assumed a Gaussian detector response function. While reference 4
suggests that a Gaussian function is reasonable, there is concern that perhaps the response function is
skewed slightly to the right and that this “tail” will contribute to greater difficulties in estimating the
spectral parameter. The gamma response function, capable of describing a wide variety of shapes with
right-hand skewness (outer curve from the right in fig. 6), was introduced to address this concern. Its
parameters were set to provide a constant 40-percent energy resolution over the study range 20–5,500
TeV from which events having incident energy described by a simple power law with α1 = 2.8 were
simulated. The number of these events was determined using the baseline detector collecting power.
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Figure 6. Gaussian and gamma detector response functions
to 40 TeV proton (40-percent resolution).

Based on 10,000 simulated missions, the mean ML estimate of α1 was 2.800 and standard
deviation 0.0093 as compared to 2.800 and 0.0092 for the mean and standard deviation, respectively,
corresponding to a Gaussian response function. Thus, the conclusion that this skewness and other
non-Gaussian assumptions are insignificant when using the method of ML. However, as will be shown,
the real key is not so much a matter of what the response function is as knowing what it is; i.e., an
accurately understanding of the response function over the incident energy range must be made. It
should also be noted that while the gamma response function as modeled has a constant energy reso-
lution of 40 percent, the Gaussian used in this comparison had a 39-percent resolution as previously
discussed.
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8.  ENERGY-DEPENDENT RESOLUTION STUDY

The situation in which the detector response function is assumed to be Gaussian, but its energy
resolution varies with incident GCR event energy, is of particular interest to designers of cosmic-ray
detectors. In the studies presented so far in this TP, the detector response function is assumed to be
Gaussian with a linear mean response (energy deposit) of the form (a + bE) and with constant detector
energy resolution ρ so that the parameter σ in the Gaussian response function is defined as σ(Ε)
=ρ (a + bE). Two cases of interest are as follows: (1) Energy resolution is “getting better,” from
40-percent resolution at E1 = 20 TeV to 30 percent at E2 = 5,500 TeV and (2) “getting worse,” from
30-percent resolution at E1 = 20 TeV to 40 percent at E2 = 5,500 TeV. These two cases are modeled by
assuming that σ(E) is a linear function of incident GCR energy of the form (c + dE) and then the
coefficients c and d are determined by matching the conditions for each of the two cases. Doing so
yields the energy-dependent resolution curves depicted in figure 7.

Table 1 shows the results based on 100 simulated missions using the same incident GCR ener-
gies for both cases. The mean estimates are seen as essentially unbiased with standard deviations
having expected comparisons; e.g., standard deviations slightly larger for the “getting worse” case.
The constant 30- and 40-percent cases are included for comparison.
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Figure 7.  Energy-dependent resolution curves.
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Spectral
Parameter

Nonconstant
(Getting Better)

Nonconstant
(Getting Worse)Constant 30% Constant 40%

Mean
2.8

Std. Dev.
0.0088

Mean
2.8

Std. Dev.
0.0092

Mean
2.8

Std. Dev.
0.0090

Mean
2.8

Std. Dev.
0.0091

Resolution

Mean and Standard Deviation of the Maximum Likelihood Estimate of α1
Based on 5,000 Missions

α1

Table 1.  Nonconstant energy resolution study.
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9.  IMPLICATIONS OF DETECTOR RESPONSE MODEL UNCERTAINTIES

Maximum likelihood estimation of the spectral parameter α1 using equation (29) requires the
complete specificity of all detector response model parameters. The reality of knowing these param-
eters with little or no surrounding uncertainty depends largely on designers being able to calibrate the
detector at different incident energies at a particle accelerator facility. However, because space-based
detectors will be exposed to GCR events having energy much greater than those energies available at
accelerator facilities, it becomes essential to gain an understanding of the detector’s response func-
tion using Monte Carlo simulations of the detector’s response (energy deposit) to those energies that
cannot be attained at accelerator facilities. These simulations, coupled with a favorable comparison
between simulation results and accelerator results at energies available in a test facility, will provide
a better understanding of the detector response function.

Next, by way of example, an investigation is done of the impact on estimating α1 when certain
detector response function parameters are incorrectly known, and as shall be seen, this state of igno-
rance will manifest itself as a bias in the mean or point estimate of α1. This state of ignorance is
modeled by simulating detector responses according to one set of detector response function param-
eters and then using a different set of parameters in the detector response function g in equation (29)
during the ML estimation procedure.

Since detector resolution is an important design parameter, consider first the case where the
detector has a constant energy resolution. In an assumed state of misunderstanding, a different resolu-
tion value was used in equation (29). For example, suppose the real detector resolution is a constant
35 percent, but in the simplex search, the resolution parameter ρ is set to different constant values in
equation (29), corresponding to resolutions ranging from 30 to 40 percent. This situation is modeled
by simulating the detector responses Yi as

Yi = (a + bEi)(1 + 0.35 Zi) (31)

according to equation (17) and then set ρ to the different values in equation (29) in the ML procedure.
The results for 500 simulated missions for each assumed resolution 30 through 40 percent while the
“real” resolution is a constant 35 percent are presented in table 2. Note that the mean estimates exhibit
a bias as a result of using incorrect values of ρ in equation (29). Note when ρ = 0.35 in equation (29)
and hence matches the “real” resolution as used in equation (31) to simulate the detector responses,
the means of the ML estimates match the assumed spectral parameter value of α1 = 2.8 used in the
simulation.
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Another interesting situation to consider is when the real detector resolution is energy depen-
dent, but in a state of ignorance, a constant resolution value is used in equation (29) in the ML estima-
tion of α1. For example, if the real detector resolution is “getting better” as in figure 7 but instead a
constant ρ  = 0.40 is used in equation (29), a mean estimate of 2.81 for α1 is obtained, whereas if ρ  =
0.35 is used in equation (29), a mean estimate of 2.78 is obtained. One may initially be surprised by
this comparison since 0.35 can roughly be considered the average resolution value for this energy-
dependent case and that using a constant ρ  = 0.35 in equation (29) should provide a closer result (less
bias) than when ρ is set to 0.40. However, remember that the ρ  = 0.40 assumption is closest to “real-
ity” in the region where events are most numerous because of the steepness of the power law and the
true energy-dependent case does start at 40-percent resolution. Also interesting is that if ρ = 0.38 in
equation (29), the mean estimate 2.8 is obtained, even though the “real” resolution is the energy-
dependent “getting better” case—a result discovered by trial and error!

A much larger bias in the estimate of α1 is observed when the case where the real detector
response function is the gamma function with a constant energy resolution of 40 percent, as depicted
in figure 6, but instead, in a state of misunderstanding, a Gaussian response function in the ML proce-
dure is assumed and the Gaussian response function defined in equation (18) is substituted into equa-
tion (29), resulting in a mean estimate of 2.52 for α1.

30%

2.83

31%

2.83

32%

2.82

33%

2.81

34%

2.81

35%

2.80

36%

2.79

37%

2.79

38%

2.78

39%

2.77

40%

2.76
Mean Estimate

of α1

Real Energy
Resolution

Table 2. Biased estimate of α1 when detector energy resolution is incorrectly
known and assumed to be a constant 35 percent.
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10.  APPLICATION TO REAL COSMIC-RAY DATA

In these simulations, the GCR events are simulated from an energy range E1 to E2, where
typically E2 = 5,500 TeV for this generic-sized detector and E1 is a value between 5 and 25 TeV. The
choice of E2 is based on the collecting power of the detector and is chosen such that there will be only
a negligible number of events above E2. The selection of E1 is largely dictated by the practical number
of events that can be handled in the simulation for several thousand missions.

Next, for each of these simulated GCR events, a detector response is simulated according to
the assumed detector response function and then the full set of simulated responses are used to esti-
mate the spectral parameters. However, because no energies below E1 are simulated, frequency histo-
grams of the simulated detector responses do not match the front-end portion of a real cosmic-ray
energy spectrum. This difference or mismatch is an artifact of not having generated events from
below E1 that would have had the effect of filling in this front-end portion of the histogram and for
consequently resembling a real cosmic-ray energy spectrum.

This difference is not critical when making relative comparisons of the effects of design
parameters when the detector response function parameters used to generated the simulated responses
match those detector response function parameters used in equation (29) in the simplex search for the
ML estimate of α1; i.e., a perfect understanding is had of the detector response function. However,
when the impacts of response function uncertainties are investigated, it is more important that the
simulation techniques produce results that are closer to a real cosmic-ray energy response spectrum.

To make the histogram of the simulated detector responses look like a real cosmic-ray energy
spectrum, a cut yc in the simulated detector responses is introduced and all energy deposits smaller
than yc are dropped. In the simulation, the choice of yc dictates admissible values of E1 because E1
must be chosen so that only a negligible number of events having incident energy <E1 deposit ener-
gies >yc, which of course depends on the detector’s energy resolution. For example, if yc = 80 GeV
corresponding to the mean energy deposit of a 25-TeV GCR event and a Gaussian response function
having 40-percent energy resolution and mean response (a + bE) is considered, as used for the baseline
detector and defined in equation (18), then E1 can be any value ≤10 TeV, since only a negligible
number of events from below 10 TeV will deposit more than 60 GeV. Selecting E1 = 10 TeV provides
≈ 182,000 GCR events and setting yc = 80 GeV and dropping all simulated detector responses smaller
than yc leaves ≈ 44,500 events on average above yc, which produces a simulated response spectrum
that does indeed resemble a real response spectrum. Table 3 shows the average number of events with
energy deposits >yc for selected values of E1 from 2 to 20 TeV. The practical benefit of table 3 is that
it provides the optimal value to set E1 in the simulation for a given cut yc so as to minimize the number
of events to initially simulate and achieve the same result. For example, if the cut is set at 60 GeV,
then E1 = 4 TeV would be set, since there is no additional benefit by taking E1 < 4 TeV.
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A very important benefit is realized by introducing the cut yc; that is, the lower limit of integra-
tion in equation (29) can be set to any value EL < E1 with the implication that this ML procedure can
be made independent of the range of integration, as long as EL is chosen wisely using table 3 (or its
equivalent for detectors having a different energy resolution), so that the ML estimation procedure
herein developed can now be applied to real cosmic-ray detector response data. It should be noted that
cuts on the high end are not necessary to consider since any value EH ≥ E2 is suitable because the
number of events above E2 is negligible and so φ0 is approximately zero when E > E2 in the integral
definition of the detector response pdf. However, setting EH unnecessarily high would result in many
unnecessary calculations in the numerical integration of equation (29).

Introduction of a cut yc requires a modification to the objective function in equation (29) to
handle the conditional detector response distribution because of the constraint y > yc. Thus, the objec-
tive function using cut yc becomes

O L g y y yj j c
j

N
( ) log log | ; ,α α1 0 1

1

= − = − >( )[ ]
=
∑ (32)

3,293,737
1,587,539

945,876
632,988
455,899
345,433
271,630
219,737
181,777
153,119
130,921
113,354
99,198
87,613
78,004
69,939
63,101
57,249
52,200

127,707
127,605
126,796
124,971
121,685
116,887
110,969
104,270
97,235
90,162
83,311
76,840
70,819
65,292
60,242
55,655
51,465
47,714
44,320

97,784
97,828
97,648
97,196
96,151
94,211
91,438
87,799
83,592
78,980
74,209
69,427
64,801
60,377
56,217
52,371
48,748
45,464
42,451

69,979
70,013
69,936
69,901
69,731
69,358
68,644
67,457
65,793
63,680
61,201
58,464
55,625
52,713
49,817
47,008
44,292
41,707
39,295

52,896
52,906
52,846
52,841
52,820
52,747
52,621
52,313
51,766
50,982
49,866
48,500
46,941
45,202
43,357
41,454
39,562
37,678
35,835

44,873
44,878
44,837
44,812
44,808
44,779
44,769
44,646
44,412
44,073
43,463
42,658
41,688
40,518
39,237
37,823
36,396
34,923
33,436

31,487
31,487
31,468
31,451
31,447
31,426
31,461
31,440
31,416
31,404
31,313
31,146
30,907
30,576
30,138
29,583
28,967
28,276
27,510

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

23,440
23,465
23,434
23,424
23,414
23,407
23,427
23,407
23,389
23,427
23,418
23,381
23,352
23,286
23,165
23,003
22,785
22,528
22,206

N0(>E1) E1 (TeV)

Cut yc
(GeV) 54 59 67 75 80 93 106

Table 3. Number of simulated energy deposits above cut yc for various E1
for Gaussian detector response function with 40-percent resolution.
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From a simulation point of view, E1 = 2 TeV is about the lowest value that was used because of
the vast number of generated events and the requirement to handle thousands of simulated missions
necessary for meaningful inferences. Consequently, cuts much less than 60 GeV were not used in
these studies. However, cuts in real cosmic-ray data can be taken to be much lower since the real
spectrum is automatically filled in from events having incident energies much less than 2 TeV and the
lower limit of integration can then be taken to be any small value.
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11.  CONFIDENCE INTERVAL FOR ααααα11111

The ML estimate αML obtained from equation (29) was shown to (1) be unbiased, (2) attain the
Cramer-Rao minimum variance bound, and (3) be normally distributed when the number of events N is
≈1,200 or larger. Thus, the variance of αML is Var(αML) = –1/[∂2LL/∂α2] evaluated at αML for any given
“mission” and where LL denotes the log-likelihood function given in equation (28) which can readily be
obtained by numerical methods. A confidence interval can then be constructed for the unknown spectral
parameter α as illustrated for each of 20 missions at 95-percent confidence in figure 8.

Extending the number of simulated missions to 2,000 provides a frequency histogram of αML as
shown in figure 9 and of the estimated standard deviation of αML as shown in figure 10.

95-Percent Confidence Interval for 
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Figure 8. Maximum likelihood estimate with 95-percent confidence interval
for 20 “missions.”
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Figure 9.  Frequency histogram of αML (2,000 missions).
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12.  TESTING FOR SLOPE DIFFERENCES OF TWO COSMIC-RAY ELEMENTAL SPECIES

Given two cosmic-ray elemental species A and B with slopes α and β,  an important hypothesis to
test is

H0:  α – β = 0  (same “slopes”)
versus

H1:  α – β ≠ 0.

To test this hypothesis, ML estimates αML and βML for each slope parameter using equation (29) and their
respective variances Var(αML) and Var(βML), numerically obtained as discussed in section 11. Because
αML and βML are both normally distributed for large N, the test statistic T = (αML – βML) is used to test H0.

Note the following:

1. T has mean µT = (α – β) because αML and βML  are unbiased.

2. The standard deviation of T is σ α βT = +Var Var
ML ML

( ) ( )  because αML and βML are independent.

3. T is normally distributed because αML and βML follow the normal distribution.

4. T is normal(0, σT) when H0 is true.

A two-sided test rejects H0 with confidence C whenever |T| > zc/2σT, where zc/2 is the critical value
of the normal distribution for confidence level C for a two-sided test. The width of the confidence interval
for (α  – β) is then 2 zc/2σT.

Furthermore, if the number of events is doubled, then let D denote the test statistic similarly defined
as T. Then D is normally distributed with mean zero and standard deviation σD under H0 also; note that σD
= σT /Sqrt(2) since the variance of each ML estimate is halved when the number of events doubles as
discussed in section 13. Thus, the width of the corresponding confidence interval is reduced by a factor of
1/Sqrt(2) when the number of events doubles.
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13.  SUMMARY, REMARKS, AND CONCLUSIONS

Two methods for estimating the single spectral index α1 of a simple power law have been
investigated. The first method, called the method of moments, was found to be very useful in studying
the general nature of the statistical estimation problem as well as yielding an analytical solution that
could be compared with Monte Carlo simulation results. Furthermore, when the detector resolution is
better than 30 percent so that the truncation of the detector response function is negligible, the method
of moments provides an estimator of α1 without requiring specific knowledge of the detector resolu-
tion ρ but only that it is better than 30 percent. This does not imply ρ is insignificant when it is
<30 percent, but only that the correction terms in equations (24)–(26) can be ignored. Thus, explicit
knowledge of the value of ρ is not needed to estimate α1. In fact, the standard deviation of the estima-
tor increases as ρ increases, as one would expect, and results from the fact that whatever ρ happens to
be, its impact is communicated to the estimate of α1 through the variance of the detector mean
response Y —a function of ρ  as indicated in equations (26)–(28). Another interesting result is that
when the resolution is <30 percent, the explicit functional form of the detector model need not be
known, but only that it is symmetric. Unfortunately, most detector response functions are worse than
30-percent resolution and may be asymmetric as well.

The method of ML estimation clearly stands out as the method of choice for estimating α1 in
terms of minimum variance and consistency (asymptotically unbiased) as well as asymptotic normal-
ity that allows for probabilistic statements, such as confidence intervals for the unknown spectral
parameter. These results as a function of detector resolution are shown in figure 8.

Figure 11. Comparison between method of moments
and ML as a function of detector resolution.
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When compared to the standard deviation of the method of moments estimator, the ratio varies
from 1.47 for the zero-percent resolution detector to 1.33 for the 50-percent resolution detector, which
is roughly equivalent to losing half of the detector’s collecting power by choosing the inferior method
of moments estimation technique.

Also shown is that the standard deviation of the estimate for both estimation procedures is
inversely proportional to the square root of the sample size, so that halving the collecting power
increases the standard deviation by a factor of 2 . This holds true for the standard deviation of the
ML estimate as long as it attains the Cramer-Rao lower bound, which it does when the number of
GCR events exceeds 2,000.

Another important result is the relationship between the collecting power and the energy reso-
lution of the detector. A measure of the detector’s ability to estimate the spectral parameter α1 is its
standard deviation, as seen in figures 8 and 9. The dominant component of the standard deviation of
αML is attributable directly to the large fluctuations in GCR incident energies, being driven by the
large variance and other higher moments of the simple power law distribution. This large component
can only be reduced by increasing the number of events N that is controlled by the collecting power of
the detector. A comparison of the standard deviation of αML for the generic detector discussed in this
TP and when its collecting power is halved is shown in figure 9. Table 4 provides the numerical
results used to construct many of the figures in this section.

Figure 12. Comparing the effect of collecting power on the standard
deviation of the ML estimate of the spectral index α1.
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1. Method of moments (theory)
2. Method of moments (simulation)
3. Maximum likelihood (Cramer-Rao lower bound)
4. Maximum likelihood (simulation)
5. Mean detector response (GeV) (theory)
6. Mean detector response (GeV) (simulation)
7. Standard deviation (theory)
8. Standard deviation (simulation)
9. Coefficient of variation VY (detector, %)

10. Maximum likelihood
11. Ratio of line 4 to line 10, compare to 

0.0115
0.0114
0.00786
0.0078
130.66
130.66
192.07
191.47
147

0.0110
1.41

0.0116
0.0117

0.0083
130.66
130.64
197.61
196.86
151

0.0118
1.42

0.0128
0.0125

0.0092
131.58
130.64
213.69
213.33
162

0.0132
1.43

0.0136
0.0133

0.0100
138.85
138.81
239.77
238.82
173

0.0144
1.44

E1=20 TeV, E2=5,500 TeV,  α1=2.8, Naverage=26,000 
Events. 5,000 Mission Averages for Simulation Results.

Analytical solution not available

0% 20% 40%

Detector Resolution

50%

E1=20 TeV, E2=5,500 TeV,  
α1=2.8, Naverage=52,000 Events.  

5,000 Mission Averages for Simulation Results.

2

Table 4.  Numerical values used to construct figures 11 and 12 GCR.
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